非稳态艾克曼流的分离提取

#Ekman_Model #海流

实际海洋观测中非稳态艾克曼流的分离提取技术与可行性深度研究报告

1. 引言:海洋动力学分离的复杂性与非稳态艾克曼流的定义

在物理海洋学的研究前沿,从复杂的现场观测数据中提取特定的动力学成分一直是一项极具挑战性的任务。用户的核心诉求聚焦于“非稳态艾克曼流”(Non-steady Ekman Flow)的分离。这一物理过程在实际海洋中主要表现为由风场瞬时强迫激发的近惯性振荡(Near-Inertial Oscillations, NIOs)和惯性流。与经典的稳态艾克曼螺旋(Steady Ekman Spiral)理论不同,非稳态艾克曼流是时间依赖的、高度间歇性的,并且在频谱上具有显著的特征。

实际海洋观测数据——无论是来自船载声学多普勒流速剖面仪(ADCP)、锚系潜标还是高频地波雷达(HF Radar)——所记录的流速矢量场 uobs 实际上是多种物理过程的线性叠加。为了从观测中分离出非稳态艾克曼流 uEkman(t,z),我们必须在数学和物理层面上解构以下方程:

uobs=ugeo+utide+uinertial+uNIW+uStokes+uturb+ϵ

其中:

本报告将基于广泛的文献调研和最新的海洋学信号处理技术,详细阐述从 uobs 中剥离 ugeoutideuNIWuStokes 的具体方法,并对分离非稳态艾克曼流的可行性进行严格的物理和统计分析。

2. 理论基础:非稳态艾克曼动力学与观测信号特征

在讨论分离技术之前,必须明确“非稳态艾克曼流”在观测数据中的具体表现形式。经典的V.W. Ekman (1905) 理论描述的是定常风场下的平衡态,但在实际海洋中,风场的高频变率(尤其是风暴过境)会激发强烈的非定常响应 。[1][2]

2.1 动力学控制方程

非稳态艾克曼流主要由动量方程中的时间导数项和科氏力项主导。在混合层内,其控制方程可简化为阻尼板模型(Damped Slab Model):

ut+ifu=τρHru

其中 f 是科氏参数,τ 是风应力,H 是混合层深度,r 是代表能量向深层辐射或耗散的阻尼系数 。该方程的解表明,风场激发的流速矢量 u 会以接近本地惯性频率 f 的频率随时间旋转。[3][4]

2.2 频谱特征与极化属性

在频谱分析中,非稳态艾克曼流表现为惯性频带(Inertial Band)内的显著能量峰值。其最关键的识别特征是极化(Polarization)

这一特征是利用旋转谱分析(Rotary Spectral Analysis)将惯性流与诸如线性内波或某些潮汐成分分离的物理基础 。[5][6]

2.3 观测挑战:欧拉与拉格朗日的矛盾

艾克曼理论描述的是质量输运,即拉格朗日(Lagrangian)速度,它包含了欧拉(Eulerian)流速和波浪诱导的斯托克斯漂移(Stokes Drift)。然而,ADCP作为一种定点(或随船)观测设备,测量的是欧拉流速。

uLagrange=uEulerian(ADCP)+uStokes

这意味着,如果我们直接从ADCP数据中提取“风海流”并与理论比对,会存在系统性偏差。特别是在强风浪条件下,斯托克斯漂移可占总表面流速的10%-40% 。因此,剔除其他成分后的“残余流”并非完全等同于艾克曼理论流,必须进行斯托克斯漂移修正。[7][8]

3. 成分剔除方法论一:地转流与低频背景流的分离

地转流通常代表了海洋中的“平均态”或中尺度涡旋场,其时间尺度(数天至数周)远大于惯性周期(中纬度约18-24小时)。分离地转流是提取非稳态艾克曼流的第一步,其精度直接决定了后续分析中是否会引入虚假的剪切。

3.1 时间平均与低通滤波法

对于定点观测(如锚系潜标),最直接的方法是利用频率差异进行滤波。

3.2 参考层推算法(Reference Level Method)

对于船载ADCP数据,由于缺乏长时间序列,通常采用“参考层”假设。

uageostrophic(z)=uobs(z)uobs(zref)

3.3 结合水文数据的热成风修正法

为了克服参考层假设的缺陷,高精度的分离需要引入同步的水文观测(CTD或XBT)。

ugeoz=gρfk×ρ

将计算出的地转剪切从ADCP观测到的总剪切中扣除。

4. 成分剔除方法论二:潮汐成分的精细化去除

潮汐(特别是半日潮 M2 和全日潮 K1)通常是海洋流场中能量最强的成分。其分离的难点在于:1)正压潮与斜压(内)潮的区分;2)惯性频率与潮汐频率的混叠。

4.1 调和分析法(Harmonic Analysis)

对于定点长序列数据,调和分析(如T_TIDE工具包)是标准方法。

4.2 船载数据的时空拟合法(Spatiotemporal Fitting)

对于走航ADCP数据,观测位置随时间变化,无法直接进行单点调和分析。

u(x,y,t)=αiϕi(x,y)+βjψj(t)

4.3 临界纬度(Critical Latitude)的“死区”问题

这是一个物理上的硬约束。当观测海域位于临界纬度附近时,分离变得极度困难。

5. 核心分离技术:非稳态艾克曼流的提取

在去除了地转流和确定性潮汐后,残余流 ures 主要由近惯性运动(Near-Inertial Motions)主导。此时的任务是将风强迫产生的非稳态艾克曼流背景内波场区分开来。

5.1 旋转谱分析(Rotary Spectral Analysis)

这是利用信号极化特征进行分离的最强有力工具。

5.2 复数解调(Complex Demodulation)

为了获得非稳态艾克曼流的时间演变序列(即随风暴事件变化的振幅和相位),复数解调是必不可少的时域处理技术。

Zdemod(t)=Z(t)eift

然后对 Zdemod 应用低通滤波器(截止频率通常设为 0.20.5 cpd),滤除高频噪声(如半日潮)和倍频干扰。最后再通过乘以 eift 还原为物理空间的惯性流 。[20][21]

5.3 分离“本地风生流”与“远程内波”

这是用户诉求中隐含的最深层难点。ADCP观测到的惯性频带能量既包含本地风场直接激发的混合层振荡(即非稳态艾克曼流),也包含从远处传播而来的近惯性内波(NIWs)。两者频率相近,但物理来源不同。

6. 不可忽视的修正:斯托克斯漂移与拉格朗日转换

在完成了上述所有欧拉流速的分离后,我们得到的仅仅是 ADCP 视角的“准欧拉惯性流”。为了真正通过物理一致性检验(即分离出的流速与风应力符合艾克曼理论),必须处理斯托克斯漂移。

6.1 物理偏差的量级

斯托克斯漂移 uStokes 是波浪轨道运动非闭合引起的净输运。在开阔大洋,uStokes 的大小通常为风速的 0.5% - 1.3%,这与风海流本身的量级(1% - 2%的风速)相当 。[8:1]

6.2 修正方法与可行性

uEkman_Theory_Target=uADCP_Residue+uStokes_Model

这一步骤对于验证分离结果至关重要。研究表明,在引入斯托克斯漂移修正后,观测到的残余流与阻尼板模型(Damped Slab Model)的相关性显著提高 。[28][29]

7. 分离技术的可行性综合分析与误差预算

综合上述各个步骤,从实际观测中分离非稳态艾克曼流的可行性并非是绝对的“是”或“否”,而是取决于环境条件和观测配置的概率分布。

7.1 高可行性场景(Ideal Conditions)

满足以下条件时,分离精度可达 80% 以上(相关系数 r>0.8):

7.2 低可行性或不可行场景(Limitations)

7.3 误差来源汇总表

误差来源 物理机制 典型量级 缓解/消除方法 残留影响评估
地转剪切残留 热成风效应导致地转流随深度变化 5-20 cm/s 结合CTD密度剖面计算热成风剪切并扣除 若无CTD数据,是最大误差源之一
斯托克斯漂移 欧拉观测与拉格朗日理论的参照系差异 5-15 cm/s 利用波浪模型计算uStokes并修正 修正后可显著提高理论符合度
非相干内潮 层结变化导致内潮相位漂移,无法被调和分析去除 2-10 cm/s 无法完全去除,表现为宽带噪声 在弱风期间严重降低信噪比
背景内波辐射 远程生成的内波传播至观测点 变动 垂直波数谱分析(向上传播者剔除) 可通过蓝移特征部分识别
仪器旁瓣盲区 表面声学反射污染 表层 10-15% 使用向下观测ADCP或HF雷达补充 对浅混合层研究是致命缺陷

[11:3][8:2][14:2][25:1][30:2]

8. 结论

从实际海洋观测数据中分离非稳态艾克曼流在技术上是可行但高度复杂的。这一过程不再是简单的滤波,而是一套基于流体动力学原理的系统性解构工程。

为了实现有效分离,必须遵循以下严格流程:

研究表明,在遵循上述流程且环境条件适宜(非临界纬度、强风事件)的情况下,分离出的非稳态艾克曼流能解释混合层流速变异的 60%-80%,为研究海气动量通量和上层海洋混合提供了可靠的观测依据。然而,在缺乏波浪和水文辅助数据的单一ADCP观测中,分离结果的物理可信度将大打折扣,需谨慎解读。

注:本报告中引用的文献代码(如 )对应于实际海洋学研究中的关键论文与观测数据集,涵盖了从20世纪90年代至今的主流方法论演进。[9:4]


🔗 正文参考文献 (References)


🧠 思考过程 (Thoughts)

Step 1: 核心研究框架构建

我正在通过系统性的梳理,建立一个能够从现实海洋噪声中提取非稳态艾克曼流的分析框架。我意识到,要实现这一目标,必须先理清总流场中各成分的耦合关系,特别是如何将受风力驱动的信号与背景环流精准剥离。

Step 2: 辨析关键动力学干扰

在思考中,我特别关注到了惯性运动与内部波动频率重叠带来的识别挑战,以及斯托克斯漂流等高频现象如何扭曲观测到的流速剖面。我正在尝试识别诸如旋转谱分析和复数解调等高级信号处理手段,以探究它们在验证模型预测与实际观测吻合程度中的关键作用。

Step 3: 提取与验证路径规划

我接下来的行动将聚焦于具体的分离技术和实验案例研究,通过对比地转成分剔除前后的数据特征,评估在不同海域环境下精确还原非稳态流速场的可行性,并寻找理论模型与现实观测残差之间的物理根源。

Step 4: [32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59]

Step 5: 多尺度流场的信号剥离技术

我正在通过合成多种信号处理技术,探索从复杂的海洋环境数据中提取风驱动成分的可行性。通过分析,我发现利用旋转谱分析和复数解调技术,可以有效地在频率空间内将惯性旋转信号与周期性的潮汐干扰分离,这为还原非稳态流速剖面奠定了技术基础。

Step 6: 欧拉观测与拉格朗日理论的偏离

在深入思考中,我发现了一个关键的物理矛盾:传统的艾克曼理论往往涉及海水输运,而主流的剖面观测仪器记录的是定点的欧拉流速。这种测量方式的差异,结合波浪引起的斯托克斯漂流,导致实际观测到的螺旋结构往往比理论预测的更加“扁平”。识别并修正这种观测偏差,是实现模型验证的关键。

Step 7: 直接强迫与自由波动辨析的挑战

我注意到研究中的一个重大信息鸿沟,即如何将局部风力直接强迫产生的惯性运动,与从远处传导而来的背景近惯性内波区分开来。现有的观测分析显示,虽然初始阶段的运动高度符合简单的动力学模型,但随着时间推移,波动能量的向深部传递会使信号变得极其复杂,这正是目前定量提取工作中的难点所在。

Step 8: 后续迭代模拟与残差验证路径

接下来,我将重点研究非稳态方程的数值迭代求解方案,探究其如何模拟流场随风力变化的演化过程。我将寻找更多通过减去地转流和潮汐流后的残差分析案例,评估在不同层结条件下,理论计算值与实际观测残差之间的吻合度,从而给出分离可行性的最终结论。

Step 9: [60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89]

Step 10: 理论模型与实测相位的偏离

通过对动力学模拟结果的深入分析,我发现“板模型”在风力作用初期能够非常精准地刻画表面惯性振荡的相位演变。然而,随着时间推移,观测到的信号往往会因为能量向深海辐射以及内波的产生而与简单的迭代方程产生偏离。我观察到,引入混合层转变层的应力剖面可以显著改善模型的还原度,这说明非稳态流速的准确性极大地依赖于我们对垂直混合过程的精细描述。

Step 11: 残差流成分的纯净度困境

在思考如何彻底孤立非稳态艾克曼信号时,我发现了一个关键的信息鸿沟。即便我们成功剔除了地转流和潮汐,剩下的残差流中依然混杂着复杂的背景“噪声”,例如远场传导而来的近惯性波和亚中尺度涡旋。目前最难调和的矛盾在于,如何界定这些残差流中究竟有多少比例是由于本地风强迫直接驱动的。此外,斯托克斯漂流和朗缪尔环流等高频波动过程,也给观测数据的纯净度带来了极大的干扰。

Step 12: 高频噪声清洗与分离极限评估

我接下来的行动将聚焦于评估残差流谱分析的物理极限。我将合成更高级的信号处理逻辑,探讨在惯性频率与潮汐频率高度重叠的挑战性海域,是否能够通过频率解调等手段进一步剥离近惯性波的干扰。我将尝试梳理出一套针对观测设备偏差的清洗方案,从而最终判定在现实海洋的复杂噪声背景下,完全还原非稳态艾克曼螺旋结构在物理和技术上的可行性边界。

Step 13: [90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113]

Step 14: 局部响应与远程波动的解耦辨析

通过对近惯性频段信号的深入解构,我发现区分“本地风致惯性响应”与“远场传导的近惯性内波”是还原非稳态艾克曼流的核心难点。虽然这两者在频谱分析中往往纠缠在一起,但我意识到可以利用风应力与流速响应之间的滞后相关性特征,在时间演化维度上对本地强迫信号进行辨识。这种基于因果性的分析思路,为评估非稳态方程计算结果在残差流中的真实占比提供了可能。

Step 15: 波浪偏置与测量基准的处理策略

我正在思考如何妥善处理观测数据中的波浪干扰。由于定点观测设备记录的是欧拉流场,而理论模型通常涉及拉格朗日输运,斯托克斯漂流产生的偏置往往会显著扭曲螺旋的几何特征。我观察到,与其单纯尝试从观测噪声中剔除波浪成分,更有效的策略是在迭代方程中显式地引入波浪应力项,这种从模型端进行修正的方法对于解决观测与理论之间“螺旋扁平化”的矛盾具有重要意义。

Step 16: 提取纯度与定量验证路径评估

我接下来的行动将聚焦于评估残差流中非稳态成分的定量解释度。我将尝试整合频率解调与风应力传递函数分析,探讨在惯性频率受背景涡旋涡度调制的情况下,如何确定信号分离的物理边界。通过对比不同海域的信噪比案例,我将最终判定在多大的误差范围内,我们可以宣称从实测海洋数据中准确还原了非稳态艾克曼螺旋的动力学演化过程。

Step 17: [114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141]

Step 18: 本地强迫与远场传播的分离瓶颈

在深入解析近惯性振荡信号时,我发现目前的核心挑战在于无法单纯依靠单点频谱分析来区分“本地风力直接驱动的响应”与“从远方传播而来的近惯性波”。虽然复数解调能精准提取特定的频率窗口,但这些信号往往包含了多种能量来源。我正在思考通过分析波动力学中的能量辐射特性,来界定非稳态艾克曼方程在模拟初期与实测高度吻合、但在后期逐渐偏离的物理机制,这主要归因于能量向深层的垂直传播。

Step 19: 观测偏差的物理订正与模型整合

我进一步厘清了处理波浪偏置(斯托克斯漂流)的工程策略。由于直接从观测中剔除微弱且多变的波浪信号极其困难,我倾向于在非稳态理论模型中直接整合波浪应力项,而不是试图去清洗实测数据。这种从“计算端”而非“观测端”发力的思路,能够有效调和理论迭代值与实测剖面在螺旋扁平化特征上的矛盾,为定量评估非稳态流速的准确性提供了更可靠的参照系。

Step 20: 分离限度评估与动力学归因总结

我接下来的行动将聚焦于对非稳态艾克曼螺旋在现实环境下的“还原度边界”给出最终定论。我将合成前述所有关于信号解调、波浪订正及背景流剔除的逻辑,评估在何种信噪比条件下,非稳态方程的计算结果可以被视为对海洋真实流场的有效还原。我的目标是归纳出理论迭代流速与实际观测流速在振幅衰减率和偏转角度上的系统性差异,从而完成对这一复杂物理过程的闭环研究。

Step 21: [142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159]

Step 22: 复杂流场分离的物理解释力评估

我在综合分析中确认,非稳态艾克曼模型在捕捉近惯性振荡的相位演变方面具有显著优势,通常能解释特定频段内50%至80%的信号方差。然而,实测数据中普遍存在的能量深向辐射和背景流调制,是导致理论振幅与实测值产生偏离的核心物理机制。通过这一发现,我确立了利用动力学响应特征来量化本地风强迫占比的评价体系,从而更客观地评估理论模型的还原精度。

Step 23: 螺旋结构扁平化的根源与校正

我通过对比多组观测案例,进一步确定了理论预测与现实观测之间系统性偏离的根源。波浪诱导的斯托克斯漂流不仅是产生测量偏差的来源,更是改变上层海洋有效粘性的关键动力因子。我意识到,将这种非线性波浪效应显式融入非稳态迭代模型,而非单纯尝试清洗观测噪声,是调和理论模型与实测螺旋偏转角差异的可靠路径,这为解决“螺旋扁平化”矛盾提供了实质性的突破。

Step 24: 分离可行性的最终定论与归纳

我接下来的行动将是完成对非稳态流速分离可行性的最终总结。我将整合频率解调、波浪订正及残差回归的逻辑,明确在现实复杂海况下提取纯净非稳态信号的信噪比阈值。我的目标是形成一份关于艾克曼螺旋在非稳态条件下演化特征的综合归纳,并就理论计算在实际海洋观测数据中的还原能力给出最终的定量判定。

思考过程参考文献


  1. Ekman transport - Wikipedia ↩︎

  2. The Ekman spiral for piecewise-uniform viscosity ↩︎

  3. A data-driven wind-to-current response function and application to ocean surface current estimates - OS ↩︎ ↩︎ ↩︎

  4. Near-inertial currents predicted by the slab model (black) and the... - ResearchGate ↩︎ ↩︎

  5. Global Observations of Rotary-with-Depth Shear Spectra in - AMS Journals ↩︎ ↩︎ ↩︎ ↩︎

  6. Advection, Phase Distortion, and the Frequency Spectrum of Finescale Fields in the Sea in - AMS Journals ↩︎ ↩︎

  7. Experimental Confirmation of Stokes Drift Measurement by High-Frequency Radars in - AMS Journals ↩︎ ↩︎

  8. Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface in - AMS Journals ↩︎ ↩︎ ↩︎

  9. Detiding Shipboard ADCP Data in Eastern Boundary Current in - AMS Journals ↩︎ ↩︎ ↩︎ ↩︎ ↩︎

  10. TIDAL AND RESIDUAL CURRENTS MEASURED BY AN ACOUSTIC DOPPLER CURRENT PROFILER AT THE WEST END OF CARQUINEZ STRAIT, SAN FRANCISCO - USGS Publications Warehouse ↩︎

  11. Detecting and Characterizing Ekman Currents in the Southern Ocean in - AMS Journals ↩︎ ↩︎ ↩︎ ↩︎

  12. Can Drake Passage Observations Match Ekman's Classic Theory? in - AMS Journals ↩︎ ↩︎

  13. Detiding ADCP Data in a Highly Variable Shelf Sea: The Celtic Sea in - AMS Journals ↩︎

  14. Tidal and residual currents over abrupt deep-sea topography based on shipboard ADCP data and tidal model solutions for three popular bathymetry grids - ResearchGate ↩︎ ↩︎ ↩︎

  15. Separation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations - ResearchGate ↩︎

  16. The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean - MDPI ↩︎ ↩︎

  17. Seasonal and synoptic variability of diurnal currents i n an upwelling system off northern Chile near 30°S Mónica Bello 1,2, - OS ↩︎ ↩︎

  18. Rotary Spectrum Analysis (Chapter 22) - Time Series Data Analysis in Oceanography ↩︎

  19. HF radar observations in the northern Adriatic: Surface current field in front of the Venetian Lagoon | Request PDF - ResearchGate ↩︎

  20. Characteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean in - AMS Journals ↩︎ ↩︎ ↩︎ ↩︎

  21. Near-Inertial Internal Wave Field in the Canada Basin from Ice-Tethered Profilers - AMS Journals ↩︎ ↩︎

  22. On the Nature of Near-Inertial Oscillations in the Uppermost Part of the Ocean and a Possible Route toward HF Radar Probing of Stratification in - AMS Journals ↩︎

  23. Near‐inertial wave energy fluxes and dissipation during CINDY - the NOAA Institutional Repository ↩︎ ↩︎

  24. A Generalized Slab Model - the NOAA Institutional Repository ↩︎

  25. Characteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean - AMS Journals ↩︎ ↩︎

  26. Rapid near-inertial wave generation at topography in response to surface wind forcing ↩︎

  27. Stokes drift - PMC - NIH ↩︎

  28. Scatter plot comparing HF radar currents with ADCP currents. a shows the Eulerian ADCP current v (A) , b shows the … - ResearchGate ↩︎

  29. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic - PMC - NIH ↩︎

  30. A Note on the Depth of Sidelobe Contamination in Acoustic Doppler Current Profiles in - AMS Journals ↩︎ ↩︎ ↩︎

  31. Comparison of Buoy-Mounted and Bottom-Moored ADCP Performance at Gray's Reef - AMS Journals ↩︎

  32. journals.ametsoc.orgDetiding Shipboard ADCP Data in Eastern Boundary Current in - AMS Journals ↩︎

  33. tandfonline.comFull article: Tide, Wind, and River Forcing of the Surface Currents in the Fraser River Plume ↩︎

  34. journals.ametsoc.orgDetiding ADCP Data in a Highly Variable Shelf Sea: The Celtic Sea in - AMS Journals ↩︎

  35. researchgate.netSeparation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations - ResearchGate ↩︎

  36. essd.copernicus.orgSea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020) - ESSD Copernicus ↩︎

  37. en.wikipedia.orgEkman transport - Wikipedia ↩︎

  38. coastalwiki.orgEkman transport - Coastal Wiki ↩︎

  39. journals.ametsoc.orgCan Drake Passage Observations Match Ekman's Classic Theory? in - AMS Journals ↩︎

  40. os.copernicus.orgThe Ekman spiral for piecewise-uniform viscosity ↩︎

  41. uhslc.soest.hawaii.eduOcean 620 Observed Mid-Latitude Circulation: How good is the simple theory? - University of Hawaii Sea Level Center ↩︎

  42. journals.ametsoc.orgGlobal Observations of Rotary-with-Depth Shear Spectra in - AMS Journals ↩︎

  43. tos.orgCoherent Float Arrays for Near-Inertial Wave Studies - The Oceanography Society ↩︎

  44. cambridge.orgRotary Spectrum (Chapter 22) - Time Series Data Analysis in Oceanography ↩︎

  45. pmc.ncbi.nlm.nih.govEkman revisited: Surface currents to the left of the winds in the Northern Hemisphere - PMC ↩︎

  46. apps.dtic.milNear-Inertial Currents in the DeSoTo Canyon Region - DTIC ↩︎

  47. repository.library.noaa.govNear‐inertial wave energy fluxes and dissipation during CINDY - the NOAA Institutional Repository ↩︎

  48. journals.ametsoc.orgNear-Inertial Internal Wave Field in the Canada Basin from Ice-Tethered Profilers - AMS Journals ↩︎

  49. ir.library.oregonstate.eduQI ET AL. - Oregon State University ↩︎

  50. mdpi.comThe Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean - MDPI ↩︎

  51. journals.ametsoc.orgCharacteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean in - AMS Journals ↩︎

  52. pmc.ncbi.nlm.nih.govDirect Observations of Coastally Generated Near‐Inertial Waves During a Wind Event - NIH ↩︎

  53. arxiv.orgRapid near-inertial wave generation at topography in response to surface wind forcing ↩︎

  54. journals.ametsoc.orgNear-Inertial Wave Energetics Modulated by Background Flows in a Global Model Simulation in - AMS Journals ↩︎

  55. journals.ametsoc.orgExperimental Confirmation of Stokes Drift Measurement by High-Frequency Radars in - AMS Journals ↩︎

  56. pmc.ncbi.nlm.nih.govStokes drift - PMC - NIH ↩︎

  57. cdn.ioos.noaa.govA two year comparison between HF radar and ADCP current measurements in Liverpool Bay - NOAA ↩︎

  58. researchgate.net(PDF) ADCP bias and Stokes drift in AUV-based velocity measurements - ResearchGate ↩︎

  59. journals.ametsoc.orgADCP Bias and Stokes Drift in AUV-Based Velocity Measurements in - AMS Journals ↩︎

  60. elischolar.library.yale.edu"Time-dependent motions and the nonlinear bottom Ekman layer" by K. H. Brink - EliScholar ↩︎

  61. journals.ametsoc.orgA Method on Estimating Time-Varying Vertical Eddy Viscosity for an Ekman Layer Model with Data Assimilation in - AMS Journals ↩︎

  62. mdpi.comWave-Modified Ekman Current Solutions for the Time-Dependent Vertical Eddy Viscosity ↩︎

  63. wenegrat.github.ioA Simple Analytical Model of the Diurnal Ekman Layer - Jacob Wenegrat ↩︎

  64. www2.whoi.eduTime-Varying Across-Shelf Ekman Transport and Vertical Eddy Viscosity on the Inner Shelf ↩︎

  65. journals.ametsoc.orgA generalized stochastic formulation of the Ekman-Stokes model with statistical analyses - AMS Journals ↩︎

  66. mdpi.comA Unifying Perspective on Transfer Function Solutions to the Unsteady Ekman Problem ↩︎

  67. researchgate.netNumerical Solution of Unsteady Ekman Equation Modified by Wave and Linear Friction Term - ResearchGate ↩︎

  68. pmc.ncbi.nlm.nih.govEkman revisited: Surface currents to the left of the winds in the Northern Hemisphere - PMC ↩︎

  69. cambridge.orgMean and turbulence dynamics in unsteady Ekman boundary layers | Journal of Fluid Mechanics - Cambridge University Press & Assessment ↩︎

  70. repository.library.noaa.govA Generalized Slab Model - the NOAA Institutional Repository ↩︎

  71. egusphere.copernicus.orgA data-driven wind-to-current response function and application to Ocean surface current estimates - EGUsphere ↩︎

  72. journals.ametsoc.orgA Generalized Slab Model in - AMS Journals ↩︎

  73. os.copernicus.orgA data-driven wind-to-current response function and application to ocean surface current estimates - OS ↩︎

  74. archimer.ifremer.frA data-driven wind-to-current response function and application to Ocean surface current estimates - Archimer ↩︎

  75. tos.orgCoherent Float Arrays for Near-Inertial Wave Studies - The Oceanography Society ↩︎

  76. pmc.ncbi.nlm.nih.govDirect Observations of Coastally Generated Near‐Inertial Waves During a Wind Event - NIH ↩︎

  77. journals.ametsoc.orgCharacteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean in - AMS Journals ↩︎

  78. arxiv.orgRapid near-inertial wave generation at topography in response to surface wind forcing ↩︎

  79. mdpi.comThe Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean - MDPI ↩︎

  80. pmc.ncbi.nlm.nih.govStokes drift - PMC - NIH ↩︎

  81. researchgate.netScatter plot comparing HF radar currents with ADCP currents. a shows the Eulerian ADCP current v (A) , b shows the … - ResearchGate ↩︎

  82. pmc.ncbi.nlm.nih.govThe Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic - PMC - NIH ↩︎

  83. journals.ametsoc.orgCan Drake Passage Observations Match Ekman's Classic Theory? in - AMS Journals ↩︎

  84. journals.ametsoc.orgObservation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface in - AMS Journals ↩︎

  85. journals.ametsoc.orgQuantifying High-Frequency Wind Energy Flux into Near-Inertial Motions in the Southeast Pacific in - AMS Journals ↩︎

  86. journals.ametsoc.orgThe Response of Large Diurnal Warm Layers to Short-Term Variability in Solar and Wind Forcing: Observations and Physical Modeling - AMS Journals ↩︎

  87. aoml.noaa.govinertial kinetic energy budget of the mixed layer and shear evolution in the transition layer in the Arabian Sea - NOAA/AOML ↩︎

  88. apps.dtic.milNear-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean - DTIC ↩︎

  89. os.copernicus.orgComparison of the simulated upper-ocean vertical structure using 1-dimensional mixed-layer models - OS ↩︎

  90. journals.ametsoc.orgDetiding Shipboard ADCP Data in Eastern Boundary Current in - AMS Journals ↩︎

  91. researchgate.netTidal and residual currents over abrupt deep-sea topography based on shipboard ADCP data and tidal model solutions for three popular bathymetry grids - ResearchGate ↩︎

  92. pubs.usgs.govTIDAL AND RESIDUAL CURRENTS MEASURED BY AN ACOUSTIC DOPPLER CURRENT PROFILER AT THE WEST END OF CARQUINEZ STRAIT, SAN FRANCISCO - USGS Publications Warehouse ↩︎

  93. pdfs.semanticscholar.orgNOTES AND CORRESPONDENCE Evaluation of Tidal Removal Method Using Phase Average Technique from ADCP Surveys along the Peng-Hu Channel in the Taiwan Strait - Semantic Scholar ↩︎

  94. os.copernicus.orgImminent reversal of the residual flow through the Marsdiep tidal inlet into the Dutch Wadden Sea based on multiyear ferry-borne acoustic Doppler current profiler (ADCP) observations - OS ↩︎

  95. journals.ametsoc.orgAdvection, Phase Distortion, and the Frequency Spectrum of Finescale Fields in the Sea in - AMS Journals ↩︎

  96. researchgate.netHF radar observations in the northern Adriatic: Surface current field in front of the Venetian Lagoon | Request PDF - ResearchGate ↩︎

  97. iap-kborn.deInvestigation of gravity waves with VHF radar measurements - Leibniz-Institut für Atmosphärenphysik, Kühlungsborn ↩︎

  98. escholarship.orgUC San Diego - eScholarship ↩︎

  99. mdpi.comRemoving Wave Bias from Velocity Measurements for Tracer Transport: The Harmonic Approach - MDPI ↩︎

  100. ftp.soest.hawaii.eduLANGMUIR CIRCULATION ↩︎

  101. journals.ametsoc.orgComparison of Buoy-Mounted and Bottom-Moored ADCP Performance at Gray's Reef - AMS Journals ↩︎

  102. journals.ametsoc.orgEstimating Profiles of Dissipation Rate in the Upper Ocean Using Acoustic Doppler Measurements Made from Surface-Following Platforms in - AMS Journals ↩︎

  103. www2.mmm.ucar.eduNonlocal transport due to Langmuir circulation in a coastal ocean ↩︎

  104. journals.ametsoc.orgObserving Directional Properties of Ocean Swell with an Acoustic Doppler Current Profiler (ADCP) in - AMS Journals ↩︎

  105. journals.ametsoc.orgA Note on the Depth of Sidelobe Contamination in Acoustic Doppler Current Profiles in - AMS Journals ↩︎

  106. os.copernicus.orgVertical structure of ocean surface currents under high winds from massive arrays of drifters ↩︎

  107. whoi.eduWave-driven inner-shelf motions on the Oregon Coast. ↩︎

  108. frontiersin.orgADCP Observations of Currents and Suspended Sediment in the Macrotidal Gulf of Martaban, Myanmar - Frontiers ↩︎

  109. iprc.soest.hawaii.eduVelocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean ↩︎

  110. journals.ametsoc.orgQuantifying High-Frequency Wind Energy Flux into Near-Inertial Motions in the Southeast Pacific in - AMS Journals ↩︎

  111. egusphere.copernicus.orgRole of sea ice, stratification, and near-inertial oscillations in shaping the upper Siberian Arctic Ocean currents - EGUsphere ↩︎

  112. mdpi.comNear-Inertial Oscillations Induced by Winter Monsoon Onset in the Southwest Taiwan Strait ↩︎

  113. rucool.marine.rutgers.eduSpatial current structure observed with a calibrated HF-Radar system - RUCOOL ↩︎

  114. journals.ametsoc.orgNear-Inertial Surface Currents around Islands in - AMS Journals ↩︎

  115. journals.ametsoc.orgCharacteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean - AMS Journals ↩︎

  116. mdpi.comThe Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean - MDPI ↩︎

  117. journals.ametsoc.orgOn the Nature of Near-Inertial Oscillations in the Uppermost Part of the Ocean and a Possible Route toward HF Radar Probing of Stratification in - AMS Journals ↩︎

  118. mdpi.comNear-Inertial Oscillations Induced by Winter Monsoon Onset in the Southwest Taiwan Strait ↩︎

  119. os.copernicus.orgSeasonal and synoptic variability of diurnal currents i n an upwelling system off northern Chile near 30°S Mónica Bello 1,2, - OS ↩︎

  120. repository.library.noaa.govNear‐inertial wave energy fluxes and dissipation during CINDY - the NOAA Institutional Repository ↩︎

  121. journals.ametsoc.orgLatitudinal Dependence of Wind-Induced Near-Inertial Energy - American Meteorological Society ↩︎

  122. journals.ametsoc.orgCharacteristics of Wind-Generated Near-Inertial Waves in the Southeast Indian Ocean in - AMS Journals ↩︎

  123. arxiv.orgRapid near-inertial wave generation at topography in response to surface wind forcing ↩︎

  124. par.nsf.govImpact of Different Wind Representations on Resonant Ocean Near-inertial Motions in the Gulf of Mexico - NSF Public Access Repository ↩︎

  125. tos.orgWhy Near-Inertial Waves Are Less Affected by Vorticity in the Northeast Pacific Than in the North Atlantic - The Oceanography Society ↩︎

  126. cdn.ioos.noaa.govA two year comparison between HF radar and ADCP current measurements in Liverpool Bay - NOAA ↩︎

  127. pmc.ncbi.nlm.nih.govStokes drift - PMC - NIH ↩︎

  128. journals.ametsoc.orgCan Drake Passage Observations Match Ekman's Classic Theory? - American Meteorological Society ↩︎

  129. journals.ametsoc.orgCan Drake Passage Observations Match Ekman's Classic Theory? in - AMS Journals ↩︎

  130. pordlabs.ucsd.eduObservations of Ekman Currents in the Southern Ocean - University of California San Diego ↩︎

  131. pubs.usgs.govVariance of discharge estimates sampled using acoustic Doppler current profilers from moving boats - USGS Publications Warehouse ↩︎

  132. journals.ametsoc.orgDiagnostic Model and of the Surface Currents in the Tropical Pacific Ocean in - AMS Journals ↩︎

  133. ieeexplore.ieee.orgIntercomparison of current measuring technology for coastal dispersion problems - IEEE Xplore ↩︎

  134. tryfan.ucsd.eduAbtracts ↩︎

  135. journals.ametsoc.orgLateral Reynolds Stress and Eddy Viscosity in a Coastal Strait in - AMS Journals ↩︎

  136. researchgate.netNear-inertial currents predicted by the slab model (black) and the... - ResearchGate ↩︎

  137. researchgate.net ↩︎

  138. journals.ametsoc.orgThe Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer in - AMS Journals ↩︎

  139. journals.ametsoc.orgWind-Driven Motions of the Ocean Surface Mixed Layer in the Western Arctic in - AMS Journals ↩︎

  140. elischolar.library.yale.eduJOURNAL OF MARINE RESEARCH - EliScholar ↩︎

  141. frontiersin.orgSpatial and seasonal variations of near-inertial kinetic energy in the upper Ross Sea and the controlling factors - Frontiers ↩︎

  142. journals.ametsoc.orgThe Internal Waves Service Workshop: Observing Internal Waves Globally with Deep Learning and Synthetic Aperture Radar in - AMS Journals ↩︎

  143. os.copernicus.orgEnhancement of near-inertial waves by cyclonic eddy in the northwestern South China Sea during spring 2022 - OS - Copernicus.org ↩︎

  144. mdpi.comThe Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean - MDPI ↩︎

  145. tos.orgWhy Near-Inertial Waves Are Less Affected by Vorticity in the Northeast Pacific Than in the North Atlantic - The Oceanography Society ↩︎

  146. egusphere.copernicus.orgEnhancement of near-inertial waves by cyclonic eddy ... - EGUsphere ↩︎

  147. journals.ametsoc.orgThe Wavelength Dependence of the Propagation of Near-Inertial Internal Waves in - AMS Journals ↩︎

  148. arxiv.orgRapid near-inertial wave generation at topography in response to surface wind forcing ↩︎

  149. journals.ametsoc.orgDynamics of the Changing Near-Inertial Internal Wave Field in the Arctic Ocean in - AMS Journals ↩︎

  150. repository.library.noaa.govNear‐inertial wave energy fluxes and dissipation during CINDY - the NOAA Institutional Repository ↩︎

  151. tos.orgCoherent Float Arrays for Near-Inertial Wave Studies - The Oceanography Society ↩︎

  152. researchgate.netComparison of wave model results with observations. a) Significant wave... - ResearchGate ↩︎

  153. journals.ametsoc.orgDetecting and Characterizing Ekman Currents in the Southern Ocean in - AMS Journals ↩︎

  154. royalsocietypublishing.orgStokes drift | Philosophical Transactions of the Royal Society A ↩︎

  155. cambridge.orgUpper-ocean Ekman current dynamics: a new perspective | Journal of Fluid Mechanics ↩︎

  156. journals.ametsoc.orgEstimation of the Eddy Viscosity Profile in the Sea Surface Boundary Layer from Underway ADCP Observations in - AMS Journals ↩︎

  157. journals.ametsoc.orgDetiding ADCP Data in a Highly Variable Shelf Sea: The Celtic Sea in - AMS Journals ↩︎

  158. elischolar.library.yale.eduJOURNAL OF MARINE RESEARCH - EliScholar ↩︎

  159. cdn.ioos.noaa.govA two year comparison between HF radar and ADCP current measurements in Liverpool Bay - NOAA ↩︎